

CH504 & CH504C

Differential Wheel Speed Sensor IC with PWM Protocol

Features

Package

- Two-wire current interface according PWM protocol
- Integrated capacitor: 1-nF (C version)
- Wide operating range: 4.5V to 20V
- Wide temperature range: -40°C to 150°C
- Other variants available in the sensor family:
 - CH505 & CH505C: AK protocol
 - o CH503 & CH503C: Single pulse (standard protocol)
- Detection of speed, rotation direction, assembly position, and air gap warning
- 2-mm distance between two outer hall elements with the 3rd element in the middle
- On-chip EEPROM with factory-programming options to optimize performance
- Compliant with requirements in ISO 26262:2018, 8-14 for a component supplier to support safety requirements up to ASIL B

Functional Block

Figure 1 CH504(C) Block Diagram

Description

The CH504(C) hall-based wheel speed sensor has a two-wire current-interface with PWM protocol. It provides speed information, direction of wheel rotation and airgap warning for vehicle & motorcycle dynamics control systems and Anti-Lock Braking Systems (ABS).

The device is specified over a wide temperature range of -40 to 150°C, and is designed to meet harsh automotive environment with optimized ESD and EMC performance. For best BCI performance, the CH504C is provided with a 1-nF integrated capacitor.

Revision History

Date	Revision	Change	
April 2022	0.1	Preliminary	

Table of Contents

1.	PRODUCT FAMILY MEMBERS 4	ļ
2.	PIN DEFINITIONS AND DESCRIPTIONS 4	
3.	ABSOLUTE MAXIMUM RATINGS 4	ļ
4.	ESD PROTECTIONS	;
5.	OPERATING RANGE	;
6. 6.1 6.2 6.3	PARAMETERS SPECIFICATION 6 Electrical Characteristics 6 Magnetic Characteristics 8 Timing Characteristics 9	;;;;;;
7. 7.1 7.2 7.3 7.4 7.4. 7.4. 7.4. 7.4. 7.5 7.6	FUNCTION DESCRIPTION. 11 General 11 Block Diagram 11 PWM Current Interface 12 Operation Modes 15 1 Uncalibrated mode and calibrated mode 15 2 Operation at Standstill 15 3 Start-Up and Under-Voltage Behavior 错误!未定义书签。 1 Duty cycle at fast changing frequencies 16 Test Circuit 17 Application Circuit 17	
8.	ELECTRO MAGNETIC COMPATIBILITY (EMC) 18	;
9.	PACKAGE INFORMATION	;

1. Product Family Members

Part No.	Marking	Description					
	C504	Two-wire PWM protocol, CSO-2 package, packing blister carrier tape, QTY					
CH504	0504	TBD, without integrated capacitor					
	C504C	Two-wire PWM protocol, CSO-2 package, packing blister carrier tape, QTY					
CH304C	05040	TBD, with integrated capacitor					
*See separat	te datasheet	s for CH504 and CH504 *目前处于前期样片阶段,为方便条样,丝印暂时是					

统一的,但会做标签区分。请以原厂沟通的信息为准。

2. Pin Definitions and Descriptions

Pin No.	Name	Туре	Function
1	VDD	Supply	Supply voltage
2	GND	Ground	Connect to ground

Figure 2 Pin Assignment and Top-Side-Marking of CSO-2 Package

3. Absolute Maximum Ratings

 T_{J} = - 40°C to 150°C, 4.5 V \leq V _{DD} \leq 20 V unless otherwise noted.

Devenuetor	Cumb al	Test Canditions/Nates	Limit Va	L lus i t	
Parameter	Symbol	Test Conditions/Notes	Min	Max	Unit
		TJ ≤ 80°C	-0.3		
		T _J ≤ 150°C		20	V
Supply voltage	V _{DD}	t = 10 x 5 min		22	V
		t = 10 x 5 min, $R_M \ge 75\Omega$ included in V_{DD}		24	V
		t = 400 ms, $R_M \ge 75\Omega$ included in V_{DD}		27	V
Junction temperature ¹	TJ	5000 h	-40	150	°C
		2500 h	-40	160	°C
		500 h	-40	170	°C
		4 h, Vcc < 16.5V	-40	190	°C

¹ Lifetime data pending on final qualification test results.

		External current limitation required, t < 4h		200	mA
Reverse polarity		External current limitation required, t<1h		300	mA
current	Irev	External current limitation required, t<10h, T=25°C		200	mA
Number of			500.000		cycles
power on cycles			300,000		Cycles
Storage	Te		-40	150	°C
Temperature	13		40	100	U
Package					
thermal	RthJA			TBD ²	K/W
Resistance					

² Pending on Cosemitech's CSO-2 package data

4. ESD Protections

ESD values below are to be updated after ESD report ready

Parameter	Test Result	Classification level	Notes
нвм	TBD	AEC-Q100-002, H3B	R = 1.5 kΩ, C =100 pF
CDM	TBD	AEC-Q100-011, C4	

Results below are tested by a leading transmission sensor Tier1 customer.

工作 状态	放电位置	放电类型	放电网络	电压等级	功能状 态要求	CH505	CH505C
	引脚	接触放电	C=150pF, R=330Ω	±4KV	I	Pass	Pass
断电	导体外壳	接触放电	C=150pF, R=330Ω	±6KV	I	Pass	Pass
	非导体外壳	空气放电	C=330pF, R=2kΩ	±8KV	I	Pass	Pass
通电	传导位置	接触放电	C=150pF, R=330Ω	±8KV	I	Pass	Pass
	传导与非传 导位置	穷与访由	C=330pF, R=2kΩ	±8KV	I	Pass	Pass
		上「放电	C=330pF, R=2kΩ	±20KV	Ш	Pass	Pass

5. Operating Range

Demonstration	Symbol Note / Test Condition					
Parameter			Min	Тур	Max	Unit
Supply voltage	V _{DD}	Directly on IC leads; voltage drop at R _M excluded	4.5	_	20	V
Supply voltage modulation	VAC	$V_{DD} = 13V; 0 < f_{mod} < 150 kHz^1$			6	V _{pp}
lunction temperature	TJ	12500h ²	-40		110	•••
Junction temperature		10000h ²	-40		125	50

¹ Sine wave

² Lifetime data pending on final qualification test results.

	1		1	1		
		5000h	-40		150	
		2500h	-40		160	
		500h	-40		170	
Pre-induction	Bo		-500		500	mT
Pre-induction offset between outer probes	B _{stat} l/r		-30		30	mT
Differential induction	dB		-120		120	mT
Pre-induction offset between mean of outer probes and center probe	B _{stat m/o}		-30		30	mT
			1		2500	Hz
Signal frequency	†		2500		5000 ³	Hz
Frequency changes	df/dt				±100	Hz/ms

³ High frequency behavior verified by design/characterization only. Frequency >2.5kHz may have influence on jitter performance and magnetic thresholds. DR-R pulse length will be cut off above approximately 3.3 kHz. Therefore direction detection may not be possible anymore at high frequency.

6. Parameters Specification

6.1 Electrical Characteristics

All values specified at constant amplitude and offset of input signal

Devenueter	Symbol Test conditions/Nates			Unit			
Parameter	Symbol	Test conditions/Notes	Min	Тур	Max	Unit	
Supply current	Low		5.9	7	8.4	mA	
Supply current	High		11.8	14	16.8	mA	
Supply current ratio	I _{High} /I _{Low}		1.9				
Current slew rate	SRr, SRf	Output rise/fall slew rate, R _M =75Ω, T<125°C	8		22	~^/uc	
		Output rise/fall slew rate, R _M =75Ω, T<170°C	8		26	mΑ/μs	
Line regulation	dlx/dV _{DD}	1			90	μA/V	
Initial calibration delay time	t _{d,input}	Additional to n _{start}	255	300	345	μs	
Magnetic edges suppressed until output switching	NDZ-start	After power on and stop pulse			1 ²	edges	

¹ Higher values due to R_M -C combination

² The sensor requires up to n_{start} magnetic switching edges for valid speed information after power-up or after a stand still condition. During that phase the output is disabled.

Magnetic edges required for offset calibration	N DZ-calibration	7 th edge correct ³			6 ²	edges
In rare cases	NDZ-calibration-				8	edges
Number of pulses in uncalibrated mode	NDZ-Startup				5	pulses
In rare cases	NDZ-Startup-				7	pulses
Number of pulses with invalid direction information	NDR-Startup	dB < dB _{EL} After n _{DR-Startup} pulses +1 the direction information is correct dB > dB _{EL} After n _{DR-Startup} pulses +1 the			7 2 ⁴	pulses
Number of pulses with invalid assembly bit	NEL-Startup	direction information is correct After n _{EL-Startup} pulses +1 the assembly bit information is correct			7	pulses
Number of pulses where the airgap warning info is suppressed	NLR-Startup	LR information is provided only in calibrated mode			5	pulses
Signal behavior after undervoltage or standstill > t _{Stop} Number of magnetic edges where the first pulse in given.	N _{DZ-Start}	Magnetic edge according to dB _{Limit, early startup} , t _{d,input} has to be taken into account			2	edges
Shortest time delay between pulse 0 (stop pulse) and pulse 1		Reference rising edges, includes pre-low length	293	345	397	μs
Shortest time delay between wheel speed pulse 1 and 2 and all further pulses		Falling to rising edge - identical with pre-low bit length	38	45	52	μs
Phase shift change during PGA switching			0		80	o
Phase shift change during transition from uncalibrated to calibrated mode	$\Delta \Phi_{ m switch}$		-90		+90	0

³ One magnetic edge is defined as a montonic signal change of more than 3.3 mT ⁴ Direction signal is given already during uncalibrated mode. Assembly Bit information is only provided in calibrated mode.

Duty cycle	duty	⁵ Measured @dB = 2mT sine wave	40	50	60	%
Jitter	SJit-close	TJ < 150°C, V _{DD} = 12 V, dB ≥ 2mT			±2	%
1Hz < f < 2.5kHz	(⁶ 1σ value)	TJ < 170°C, V _{DD} = 12 V, dB ≥ 2mT			±3	%
Jitter	SJit-close	T」< 150°C, V _{DD} = 12 V, dB ≥ 2mT			±3	%
2.5kHz < f < 5kHz	(⁶ 1σ value)	T」< 170°C, V _{DD} = 12 V, dB ≥ 2mT			±4.5	%
Jitter	S _{Jit-far}	T」< 150°C V _{DD} = 12 V, 2mT ≥ dB > dB _{Limit}			±4	%
1Hz < f < 2.5kHz	(⁶ 1σ value)	$T_J < 170^{\circ}C$ $V_{DD} = 12 \text{ V}, 2mT \ge dB > dB_{Limit}$			±6	%
Jitter	S _{Jit-far}	T」< 150°C V _{DD} = 12 V, 2mT ≥ dB > dB _{Limit}			±6	%
2.5kHz < f < 5kHz	(⁶ 1σ value)	TJ < 170°C V _{DD} = 12 V, 2mT ≥ dB > dB _{Limit}			±9	%
	SJit-close	-40° C ≤ T _{amb} ≤ 150°C			±3	%
Jitter during startup	(⁶ 1σ value)	150°C ≤ T _{amb} ≤ 170°C			±4	%
and uncalibrated mode	SJit-far	-40° C ≤ T _{amb} ≤ 150°C			±5	%
	(⁶ 1σ value)	150°C ≤ T _{amb} ≤ 170°C			±7	%
Jitter at board net ripple	⁶ SJit-AC	V _{DD} =13V ± 6Vpp 0 < f < 50kHz, dB = 15 mT			±2	%
Jitter at board net ripple in uncalibrated mode	S _{Jit-AC} (⁶ 1σ value)	V _{DD} =13V±6Vpp 0 < f < 50kHz, dB = 15 mT			±3	%

⁵ During fast offset alterations, due to the calibration algorithm, exceeding the specified duty cycle is permitted for short time periods.,

⁶ Verified by design/characterization only.

6.2 Magnetic Characteristics

All values specified at constant amplitude and offset of input signal, over operating range, unless otherwise specified. Typical values correspond to $V_{DD} = 12$ V and $T_A = 25^{\circ}$ C.

Deremeter	Symbol	Test conditions/Notes		l Init		
Parameter	Symbol	Test conditions/notes	Min	Тур	Max	Unit
		1Hz < f < 2.5kHz	0.35	0.8	1.5	_
Limit threshold	¹ dB _{Limit}	2.5kHz < f < 5kHz			1.6	тт

¹ Magnetic amplitude values, sine magnetic field, Limits refer to the 50% criteria. 50% of pulses are missing or wrong. Valid in calibrated mode only.

Airgap warning	1.10	1Hz < f < 2.5kHz	0.9	1.4	2.6	T
threshold	' OB Warning	2.5kHz < f < 5kHz			2.8	mı
Limit - Airgap warning threshold ratio	dB _{Warning} /dB _{Limit}		1.3	2	2.7	
Assembly position threshold	¹ dB _{EL}	At room temp	5.2	7.2	9.6	mT

Figure 3 Definition of rise and fall time

6.3 Timing Characteristics

Parameter	Symbol	Li	imit Valu	es	Unit
Farallieter	Symbol	Min	Тур	Max	Unit
Pre-low length	t _{pre-low}	38	45	52	μs
Length of Warning pulse	twarning	38	45	52	μs
Length of DR-L pulse	t _{DR-L}	76	90	104	μs
Length of DR-R pulse	t _{DR-R}	153	180	207	μs
Length of DR-L & EL pulse	tdr-l⪙	306	360	414	μs
Length of DR-R & EL pulse	tdr-r⪙	616	720	828	μs
Output of EL pulse, maximum frequency	f _{EL, max}		117		Hz
Length of stand still pulse	t _{stop}	1.232	1.44	1.656	ms
Stand still period ¹	T _{stop}	590	737	848	ms

¹ If no magnetic switching edge is detected for a period longer than T_{stop}, the stand still pulse is issued.

6.4 Degradation of Direction Signal

With the two outer hall elements distance being 2mm, the direction signal **dB_dir** (= center - (left + right) / 2) is optimized for a target wheel pitch of 4 mm. Increase the magnetic input signal to compensate signal loss for pitches other than 4 mm. With an ideal pitch of 4 mm, the absolute speed signal is 2 x higher than direction signal due to differential principle. Both speed and direction signals in **Figure 5** are normalized to magnetic speed signal for an ideal pitch of 4 mm.

7. Function Description

7.1 General

The CH504(C) detects the motion of active wheels (multiple encoder) and passive wheels (i.e., having ferromagnetic teeth) by measuring the differential flux density of the magnetic field. A back-biasing permanent magnet must be used when pairing with passive wheels. Either south or north pole of the magnet can be attached to the back side of the IC package.

Both speed and direction of rotation information are provided. This is accomplished with three equallyspaced Hall elements, integrated on the IC. The two outer Hall elements have a distance of 2 mm, generating a differential signal that derives the speed of the wheels. The 3rd Hall element is placed in the middle, and together with the outer ones for direction detection.

The device is designed with a dynamic self-calibration algorithm to cancel magnetic offset up to \pm 20mT. Only a few magnetic edges after start-up (uncalibrated mode) are necessary for self-calibration. After the offset calibration sequence, switching occurs when the input signal crosses the arithmetic mean of its maximum and minimum values, see **Figure 6**.

A valid sensor output can only exist in two states, OFF or ON, which is indicated by **LOW** and **HIGH** current consumption respectively.

Figure 6 Zero-crossing principle and corresponding output signal

7.2 Block Diagram

CH504(C) main blocks are as follows.

- Three Hall elements (left, center, right)
- Speed signal (**dB**) path: Pre-amplifier, Low-pass filter (LPF), Main Comparator, Tracking ADC, Offset DAC
- Direction signal (dB_{dir}) path: Pre-amplifier, Low-pass filter (LPF), Direction ADC
- Digital Core (Control logic)
- Current modulator
- Supplies for Hall, analog & digital

Figure 7 Block Diagram

The direction signal (**dB**) is calculated as Equation (1), amplified, filtered and then digitized by the tracking ADC.

$$dB = Right - Left$$
(1)

Peak detection and offset calculation are done in the digital core. The calculated offset ($(dB_{max} + dB_{min})/2$) is fed back into the speed signal path with a 14-bit DAC to correct any offsets. The main comparator compares the speed signal with zero value. In uncalibrated mode, output of speed pulse is triggered in the digital core by exceeding a certain threshold (2 x dB_{limit}). The speed pulse of the output protocol is issued by zero crossing.

The direction signal dB_{dir} is calculated as Equation (2), amplified, filtered and digitized. The direction information is determined by the digital core which then issues the PWM protocol.

$$dB_{dir} = Center - (Left + Right)/2$$
(2)

7.3 PWM Current Interface

For reliable internal conveyance, the output current is **LOW** for $t_{pre-low}$ between each magnetic transition and the rising edge of the corresponding output, followed by the signal pulse, see **Figure 10**. In addition to the speed pulse, the following information is provided by varying the length of the output pulses (i.e., PWM modulation).

Airgap Warning range = *Warning*: issued when the magnetic field is below a critical value, or when the airgap between the IC and the target wheel exceeds a critical value. The IC works with reduced functionality. The definition of differential magnetic flux density ranges can be found in **Figure 9**.

Assembly position range = EL: issued when the magnetic field does not reach a pre-defined value. The device works with full functionality. As the CH504(C) uses a PWM output, the EL information has a specific pulse length as specified in **6.3**. The EL bit can be used to confirm the correct mounting of the sensor. This test can be done in production line applying a low-frequency speed signal.

Direction of rotation right = DR-R: issued the target wheel in front of the sensor IC moves from the pin **GND** to the pin **V**_{DD}, as shown in 错误!未找到引用源。**Figure 8.**

Direction of rotation left = *DR-L*: issued the target wheel in front of the sensor IC moves from the pin V_{DD} to the pin **GND**. At sufficient magnetic field the direction information will be corrected already during uncalibrated mode after 2 pulses.

-

The magnetic differential field is defined as **dB** in **Figure 6**.

- When **dB** < **dB**_{Limit}, signal is lost.
- When dB < dB_{warning}, the output pulse length is 45µs. The warning output is dominant. This means, both the direction and the assembly position information (EL) are disabled as a result of being close to the limit airgap.

Depending on left or right rotation, when:

- $dB > dB_{EL}$, the output pulse lengths are 90µs (DR-L pulse) or 180µs (DR-R pulse).
 - $dB < dB_{EL}$, the output pulse lengths are 360µs (DR-L pulse) and 720µs (DR-R pulse).

Due to decreasing cycle times at higher frequencies, these longer pulses are only output up to frequencies of approximately 117Hz. For higher frequencies and $dB < dB_{EL}$, the output pulse lengths are 90µs or 180µs respectively.

Figure 10 Definition of PWM current interface

7.4 Operation Modes

7.4.1 Uncalibrated Mode and Calibrated Mode

To detect the signal transient, a threshold DNC (digital noise constant) needs to be exceeded. This DNC is determined by the signal amplitude and initial offset value. The smallest DNC (in 错误!未找到 引用源。), defines the parameter "dB_{startup}", which is 2^*dB_{limit} .

When the signal slope is identified as a rising-edge (or falling-edge), a trigger pulse will be issued to the current modulator. A 2nd trigger pulse is issued as soon as a falling-edge (or rising-edge respectively) is detected (and vice versa).

A phase shift between the magnetic input signal and output signal occurs, when the DNC changes $(d_1 \rightarrow d_2)$ with the magnetic field amplitude. In the calibrated mode the output will switch at zerocrossing of the input signal. The phase shift between input and output signal is no longer determined by the ratio between DNC and signal amplitude. Therefore, a sudden change in the phase shift may occur during the transition from uncalibrated to calibrated mode. The summed-up change in phase shift from the first output edge issued to the output edges in calibrated mode will not exceed $\pm 90^{\circ}$. After calibration, consecutive output edges should have a nominal delay of about 180°.

Figure 11 Example of transition from uncalibrated to calibrated mode

7.4.2 Operation at Standstill

If no magnetic differential signal is recognized for longer than standstill period T_{stop} , the IC sends the stop pulse. Typically, with the first output stop pulse, the circuitry reverts to the uncalibrated mode.

7.4.3 Duty Cycle at Fast Changing Frequencies

If the duty cycle deviates from 50%, it is possible that the present pulse length is output entirely once and cut once, within the same period.

7.4.4 Change of Direction of Rotation

A fast rotation direction reversal (in t < 0.7s) can lead to a local extremum (maximum or minimum) of the magnetic input signal. This local extremum could be detected and incorrectly used for offset calibration. At worst case, a duty cycle up to max 15% to 85% could occur for a few pulses. $dB_{warning}$ and dB_{EL} information can be incorrect during this short period. Typically, after 2-3 zero crossings, a recalibration takes place, and the offset will be then correct and hence the duty cycle, $dB_{warning}$ and dB_{EL} also. With that, the sampling points for direction detection are also at unusual signal phase angles. At small magnetic input signals ($dB < 1.7 \times dB_{warning}$) this can lead to incorrect direction information.

If the local extremum occurs close to the zero-crossing, it could theoretically cause distances down to 45 μ s of two consecutive output pulses at the point of direction reversal as well as a **dB**_{warning} pulse.

Figure 14 Example of fast direction reversal

7.5 Test Circuit

Following test circuit is used for evaluating electrical parameters on this datasheet.

Figure 15 Test Circuit for CH504

7.6 Application Circuit

Circuit below shows the recommended application circuit with reverse bias and overvoltage protection.

Figure 16 Application Circuit

An implementation of 10 Ω in V_{DD} path reduces minimum power supply direct on leads of the sensor, but decreases max current at D₂ and makes PCB more robust. This PCB represents a compromise of minimum power supply and current flow on D₂. With higher values than 10 Ω a higher minimum supply voltage and higher robustness is reached.

8. Electro Magnetic Compatibility (EMC)

Suggested EMC test circuit, see **Figure 17**. External components can vary depending on the device version (with or without capacitor inside). Results are dependent on R_M !

Figure 17 Recommended EMC Test Circuit

9. Package Information

For CH504 and CH504C, the L6 in POD dimension is different. See details in **Figure 18** and **Figure 19**.

Part Number	Package	Package Dimensions
CH504	CSO-2	Figure 18
CH504C	CSO-2	Figure 19

A3

5

<u>m</u>

L6

≶

= 0.1

			Ч	W	L6	L5	L4	L3	L2	7	т	ш	D	C1	c	B1	Β	A1	A	SYMBOL
				1.620	1.267		0.550	0.900	0.820	1.150	0.192	2.490	18.600	3.300	3.520	5.070	5.290	0.190	0.910	MIN
1111	147 - H		45°	1.670	1.367	2.000	0.650	1.000	0.870	1.200	0.200	2.540	18.800	3.380	3.640	5.150	5.340	0.240	0.960	NOM
10.1	产品图			1.720	1.467		0.750	1.100	0.920	1.250	0.208	2.590	19.000	3.460	3.760	5.230	5.390	0.290	1.010	MAX

Figure 18 CH504 POD

с с1

L1

<u>L4</u>

12

Тор

Bottom

Figure 19 CH504C POD